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Many studies performed in recent years indicate a rich stochastic dynamics of
transitions between a multitude of conformational substates in native proteins.
A slow character of this dynamics is the reason why the steady-state kinetics of
biochemical processes involving protein enzymes cannot be described in terms of
conventional chemical kinetics, i.e., reaction rate constants. A more sophis-
ticated language of mean first-passage times has to be used. A technique of
summing up the stochastic dynamics diagrams is developed, enabling a calcula-
tion of the steady-state fluxes for systems of enzymatic reactions controlled and
gated by the arbitrary type stochastic dynamics of the enzymatic complex. For a
single enzymatic reaction, it is shown that the phenomenological steady-state
kinetics of Michaelis–Menten type remains essentially unaltered but the inter-
pretation of its parameters needs substantial change. A possibility of dynamical
rather then structural inhibition of enzymatic activity is supposed. Two coupled
enzymatic cycles are studied in the context of the biologically important process
of free energy transduction. The theoretical tools introduced are applied to elu-
cidate the mechanism of mechanochemical coupling in actomyosin molecular
motor. Relations were found between basic parameters of the flux-force depen-
dences: the force stalling the motor, the degree of coupling between the ATPase
and the mechanical cycles as well as the asymptotic turnover number, and the
mean first-passage times in a random movement between the particular con-
formational substates of the myosin head. These times are to be determined
within a definite model of conformational transition dynamics. The theory
proposed, not contradicting the presently available experimental data, is capable



to explain the recently demonstrated multiple stepping produced by a single
myosin head during just one ATPase cycle.

KEY WORDS: Protein dynamics; stochastic theory of reaction rates; first-
passage time; enzymatic catalysis; free energy transduction; actomyosin molecular
motor.

1. INTRODUCTION

Statistical theory of any physical process has to be based on simple but adequate
models of phenomena underlying microscopic dynamics. Remarkable prog-
ress in studies of internal dynamics of biomolecules acomplished in recent
years (1–5) has made it possible to formulate such models also for the basic
biochemical processes. It is now clearly established that apart from the
usual internal vibrations the native biomolecules, in particular protein
enzymes, reveal also a rich stochastic dynamics of transitions between a
multitude of conformational substates. Except some very fast processes of
electron transfer, typical time scales of biochemical processes range from
microseconds to seconds, hence the macromolecular normal vibrations are
too fast to essentially influence these processes. Only the slower, stochastic
dynamics of conformational transitions can affect the majority of bioche-
mical processes. As a consequence, any adequate statistical theory of these pro-
cesses has to be a development of the stochastic theory of reaction rates. (6–8)

The relaxation time spectrum characterizing the conformational tran-
sition dynamics of native proteins seems to be practically quasi-continuous,
at least in the range from 10−11 to 10−7 s. (5) Two classes of mathematical
models of the stochastic dynamics with such a property can be proposed.
In the first class, of the protein machine type, (5, 9) the dynamics of confor-
mational transitions is represented by a quasi-continuous diffusion in a
certain effective potential along one or a few ‘‘mechanical’’ coordinates,
e.g., angles or distances describing mutual orientation of approximately
rigid fragments of protein secondary structure (a-helices, b-plated sheets)
or larger structural elements. The mechanical coordinate may be also iden-
tified with a ‘‘reaction coordinate,’’ if this can be determined. The spectrum
of reciprocal relaxation times for dynamics of the protein machine type is
more or less homogeneous. Otherwise, in the second class of models of
the protein glass type (5, 10) the spectrum of reciprocal relaxation times is
assumed to have a self-similarity symmetry. Time scaling, often observed
in the case of protein involving reactions, (3–5) can originate either from a
hierarchy of barrier heights in the conformational potential energy land-
scape (3, 4) or from a hierarchy of bottlenecks (the entropy barrier heights) in
the network joining conformations between which direct transitions take
place. Such networks are represented by fractal lattices. (10, 11)
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The essential majority of reactions involving protein enzymes are
controlled and, presumably, also gated by the intramolecular dynamics
of conformational transitions. (5) To explain what do these two notions,
important to the subject of the present paper, mean, we present in Fig. 1
an exemplifying realization of the microscopic (or rather mezoscopic)
stochastic dynamics underlying a unimolecular reaction

M 1 } M 2

between two chemical species M1 and M2 of the protein macromolecule or
its complex with a low-molecular weight substrate. The chemical reaction is
realized through the transitions between distinguished conformational
substates in M1, jointly forming what is called the transition state M‡

1, and
distinguished conformational substates in M2, jointly forming the transi-
tion state M‡

2. Two limiting cases can be formally distingushed. The one,
where both transition states comprise all the conformational substates in
M1 and M2, referred to as a reaction with fluctuating barriers (each con-
formational substate is related to a generally different free energy barrier
for the reactive transition). And the opposite, of the transition states

M 1 M 2

Fig. 1. Exemplifying realization of the model intramolecular dynamics underlying the uni-
molecular reaction M 1 } M 2 discussed. Chemical states M1 and M2 of a macromolecule are
composed of many conformational substates (white and black circles) and the intramolecular
dynamics involves purely stochastic conformational transitions (the arrows). Actually, a much
larger number of conformational substates are expected. The chemical reaction is realized
through the transitions between distinguished conformational substates in M1, jointly forming
what is called the transition state M‡

1 (the black circles), and distinguished conformational
substates in M2, jointly forming the transition state M‡

2. If the transition states comprise all
the conformational substates in M1 and M2 we refer to such a situation as a reaction with
fluctuating barriers and if the transition states are reduced to single conformational substates
we talk about the gated reaction.
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reduced to single conformational substates, joitly forming a ‘‘gate;’’ we say
then about a gated reaction. The two concepts have been introduced in the
context of protein reactions in 1980 by Frauenfelder and coworkers. (12)

In formal terms, the model dynamics is described by a system of
master equations (13)

ṗl(t)=C
lŒ
[wllŒ plŒ(t)−wlŒl pl(t)]. (1.1)

The quantity pl(t) denotes the probability of the macromolecule being in a
conformational substate l at time t and the coefficients wllŒ are the transi-
tion probabilities per unit time satisfying the detailed balance condition.
The dot means a derivation with respect to time. The mole fractions

Pi(t) — C
l ¥M i

pl(t), (1.2)

i=1, 2 (P1(t)+P2(t)=1), of protein molecules being at time t in the che-
mical state M1 or M2, respectively, proportional to the molar concentra-
tions [M1] or [M2], satisfy the equation:

Ṗ1(t)=−Ṗ2(t)=− C
l ¥M‡1 lŒ ¥M

‡
2

[wlŒl pl(t)−wllŒ plŒ(t)]. (1.3)

In general the solution to it is non-exponential and depends on the initial
values of all the probabilities pl. However, if the reaction is an activated
process, i.e., if transitions between the states M1 and M2 are rare when
compared to the time of conformational relaxation, than, after the initial
period equal to that time, Eq. (1.3) takes a form of the usual kinetic
equation

Ṗ1(t)=−Ṗ2(t)=−k+P1(t)+k−P2(t) (1.4)

of the exponential solution.
The reciprocal forward reaction rate constant k−1+ and the reciprocal

backward reaction rate constant k−1− can be decomposed into three time
components: (6–8)

k−1+=(k
eq
+ )

−1+y1+K−1y2, k−1− =(k
eq
− )
−1+y2+Ky1. (1.5)

Here K is the ratio

K — keq+/k
eq
− , (1.6)

140 Kurzyński and Chełminiak



thus, due to the form of Eqs. (1.5), also the ratio

K=k+/k− , (1.7)

i.e., the chemical equilibrium constant. The first components in Eqs. (1.5)
determine the time needed for reaction to proceed in a given direction
under the assumption (made in the transition state theory (6, 7)) that the
corresponding transition state M‡

i is in a local equilibrium within itself and
with respect to the remaining substates in Mi. As a result of the proceeding
reaction this equilibrium is, however, disturbed. These are the remining
components in Eqs. (1.5) that determine the time needed for restoring this
equilibrium, both from the side of M1 and of M2.

If all the three components in Eqs. (1.5) are comparable (as in the case
of reactions of small molecules in the gas phase), the forward and back-
ward reaction rate constants are well described by the transition state
theory counterparts keq+ and keq− , possibly with certain transmission coeffi-
cients smaller than unity. The initial stage of the reaction is then practically
absent. If, on the contrary, the second and the third components prevail,
the reaction is referred to as controlled by intramolecular dynamics and the
transition state theory fails. In the latter case, the initial stage of the
reaction can appear even to dominate.

That biochemical reactions are controlled by the intramolecular
dynamics follows from the observation of some non-exponential initial
stages. (3–5, 12, 14) The non-exponential initial stage is clearly seen in computer
simulations of the time course of reaction gated and controlled by a model
dynamics of random walk type. (11)

Direct observation of the initial stages of reactions in experiments and
simulations was possible due to a special preparation of the initial con-
formational substates of the protein confined to the reaction transition
state. Usually, the initial distribution of conformational substates is not
much different from the local equilibrium and no initial condition-depen-
dent stages are observed in the time course of biochemical reactions pro-
ceeding in standard conditions. But the specially prepared initial substates
of protein macromolecules occur also in standard conditions, if several
coupled reactions gated by conformational transition dynamics proceed in
steady state. Because of the slow character of the intramolecular dynamics,
the succeeding reactions proceed before the local equilibria in the preceding
chemical species have been reached. As a consequence, the steady-state
kinetics, like the initial stage kinetics, cannot be described in terms of the
usual rate constants. This possibility was suggested already more then a
quarter of a century ago by Blumenfeld. (15) More adequate physical quan-
tities that should be used are the mean first-passage times. (5) The goal of
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the present paper is to prove this formally for the protein involving reac-
tions controlled and gated by an arbitrary stochastic dynamics of confor-
mational transitions. Only models that assume gating in addition to the
control by the intramolecular dynamics, when applied in description of the
complete enzymatic cycles proceeding under the steady-state conditions,
lead to the reconstruction of the commonly observed Michaelis–Menten
kinetics. (16) This was shown specifically for the particular protein-machine
model of intramolecular dynamics (9) and will be proven quite generally
here.

The paper is organized as follows. After this short Introduction to the
main concepts of the stochastic theory of reaction rates in application to
proteins, a general technique of the mean first-passage time calculation is
developed in Section 2 and a few theorems concerning the gated reactions
are proven in Section 3. A detailed analysis of the steady-state kinetics of a
single enzymatic cycle is presented in Section 4 whereas in Section 5 two
coupled enzymatic cycles are studied in the context of the biologically
important processes of free energy transduction. To show the usefulness of
the theoretical tools introduced we apply them in Section 6 for elucidation
of the mechanism of mechanochemical coupling in actomyosin molecular
motor. Section 7 makes a summary. Some preliminary results have been
already published elsewhere. (14, 17)

2. CALCULATION OF MEAN FIRST-PASSAGE TIMES

Let us consider a set of states M of a physical system with a certain
stochastic dynamics determined by a set of master equations (1.1) with the
transition probabilities per unit time, wllŒ, satisfying the detailed balance
condition. The set M can be considered as a graph (diagram, lattice): the
states of the system are represented by the vertices (points, sites) and
the direct transitions, determined by the non-zero w’s, by the edges (lines, the
nearest neighbours). (18) By definition, (13) to find the mean first-passage time
from some initial to some final state of the diagram M, one has to put a
statistical ensemble of the systems at the initial state and observe its
stochastic evolution. Each system reaches the final state after a certain
time. The average of these times is the mean first-passage time from the
initial to final state. But one can observe also some equivalent infinite
process for a single system, assuming that each time a given system reaches
the final state the same system appears anew at the initial state. After a
time long enough this will be the stationary flux in such a diagram that
determines the mean first-passage time looked for.

More precisely, after Hill, (19) the mean first passage time yM(l0 Q l)
from the state l0 to l in the diagram M with absorption at the final state l
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can be found as the reciprocal of a steady-state one-way cycle flux or a sum
of such fluxes J in a modified diagram M l0 Q l in which the absorption
transition or transitions are redirected to the starting state l0 with a simul-
taneous elimination of the absorption state from the original diagram M.
An illustrative example of such a modification is shown in Figs. 2(a)
and (b). In formal terms

yM(l0 Q l)=J−1=1C
lŒ
wllŒ plŒ 2

−1

, (2.1)

where the probabilities plŒ are solutions of a set of the master equations
(1.1) for the modified diagram M l0 Q l under the steady-state boundary
conditions, with some detailed balance conditions broken. A useful method
for the calculation of such steady-state probabilities and fluxes is offerd by
the technique of summing up the directional diagrams described in an
algorithmic way in the already mentioned book by Hill. (19)

The Hill’s algorithm of finding the steady-state (or the equilibrium, in
the case when the detailed balance condition is satisfied for each transition)
probability pl for an arbitrary diagram S comprises the following steps:

(i) Construction of the complete set of partial diagrams for S, each
of which contains the maximum possible number of lines that can be
included in the diagram without forming any cycle (closed path).

(ii) Construction of directional diagrams, for each state l and each
partial diagram, if possible, in which all connected paths are directed
toward and end at the state l. The directional diagram is uniquely attributed
with a number equal to the product of transition probabilities correspond-
ing to all directed lines involved.

(iii) Calculation of the sum of all directional diagrams of each state l
in S, further denoted as Dl(S), and than the sum of all directional diagrams
in S

D(S) — C
l ¥ S
Dl(S). (2.2)

The steady-state (or equilibrium) occupation probability of the state l is
determined by the ratio

pl=
Dl(S)
D(S)

. (2.3)
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(a)
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4

(b)

2 = 1
3

4

(c)

(d)

(e)

Fig. 2. (a) An example of the diagram M determing certain stochastic dynamics. (b) The
modification M 2Q 1 of the adjoining diagram, used in the calculation of the mean first-passage
time yM(2Q 1). (c) A complete set of partial diagrams for the modified diagram M 2Q 1.
(d) A complete set of partial diagrams for three possible dissections of the original diagram M
into a subdiagram containing site 1 and a subdiagram containing site 2. It is seen that, if
isolated sites counted as unity are disregarded, the set (d) of diagrams is identical to the set (c).
(e) On multiplying diagrams in the set (d) by appropriate transition probabilities to the final
site 1 one gets a set of diagrams which is identical to the complete set of all directional
diagrams for site 1 in the original diagram M.

On applying this algorithm to the the probabilities plŒ in Eq. (2.1) we
get

yM(l0 Q l)=
;lŒ DlŒ(Ml0 Q l)

;lŒ wllŒDlŒ(Ml0 Q l)
. (2.4)
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To proceed further on it is essential to note that the complete set of partial
diagrams for the modified diagram Ml0 Q l is identical to the complete set of
partial diagrams for all possible dissections of M into sums of the form
Ml0 2 M l, the subdiagram Ml0 containing site l0 and the subdiagram Ml

containing site l (cf. example in Figs. 2(c) and (d)). As a consequence the
numerator of Eq. (2.4) can be rewritten as a quantity

Dl, l0 (M) — C
M l0 2M l

Dl(Ml) D(Ml0 ), (2.5)

with the summation running over all possible dissections M l0 2 Ml of M,
and the denominator of Eq. (2.4) equals simply the sum of all directional
diagrams of the final state l in M (cf. Fig. 2(e)), thus

yM(l0 Q l)=
Dl, l0 (M)
Dl(M)

. (2.6)

In the example considered in Fig. 2 the numerator consists of 12 different
terms of the form of products of two possible transition probabilities
allowed in five diagrams presented in Fig. 2(d) (the points count as unity),
whereas the denominator consists of 8 terms of the form of products of
three transition probabilities, presented directly in Fig. 2(e).

It is worth noting that the equilibrium (and only equilibrium!) occu-
pation probabilities pl can also be calculated for any subdiagram MŒ of M
comprising the state l. One only has to use the notion of the conditional
probability and replace Eq. (2.3) with a more general equation

pl=
Dl(MŒ)
D(MŒ)

Peq(MŒ), (2.7)

whith the quantity

Peq(MŒ) — C
l ¥MŒ
pl (2.8)

having a meaning of the equilibrium occupation probability of the subset
of states MŒ. On comparing Eqs. (2.7) and (2.3) we obtain a relation

Dl(M) D(MŒ)=Dl(MŒ) D(M) Peq(MŒ) (2.9)

fulfilled for arbitrary l in MŒ. The reasoning does not apply to the steady-
state occupation probabilities, with the detailed balance conditions broken,
as a cut out of the subdiagram may perturb some probability fluxes.
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With the help of Eq. (2.9) the sum of the forward and backward mean
first-passage times can be rewritten in a symmetrical form:

yM(l0 Y l) — yM(l0 Q l)+yM(lQ l0)=
D(M) Sl0, l(M)
Dl0 (M) Dl(M)

, (2.10)

where

Sl0, l(M)=Sl, l0 (M) — C
M l0 2M l

Dl0 (Ml0 ) Dl(Ml) (2.11)

with the summation running over all possible dissections M l0 2 M l of M,
the subdiagram M l0 containing l0 but not l and the subdiagram M l

containing l but not l0.
For an arbitrary state lŒ ¥ M, different both from l0 and l, the class of

all possible dissections Ml0 2 M l of the diagram M subdivides itself into
two subclasses of dissections of the form M l0lŒ 2 M l, the subdiagram M l0lŒ

containing l0 and lŒ but not l and the subdiagram M l containing l but not
l0 and lŒ, and of the form M l0 2 M llŒ, the subdiagram M l0 containing l0 but
not l and lŒ and the subdiagram M llŒ containing l and lŒ but not l0.2 With

2 One subclass can be empty as for, e.g., one-dimensional diagrams.

this subdivision Eq. (2.6) can be written as

yM(l0 Q l)= C
M l0lŒ 2M l

Dl(M l) D(M l0lŒ)
Dl(M)

+ C
M l0 2M llŒ

Dl(MllŒ) D(Ml0 )
Dl(M)

. (2.12)

The first sum determines the mean first-passage time from l0 to l provided
lŒ has been reached before l and the second sum determines the mean first-
passage time from l0 to l provided lŒ has not been reached before l. In other
words, the first sum is the mean first-passage time from l0 or lŒ to l and the
second sum, the mean first-passage time from l0 to l or lŒ. This justifies the
notations

C
M l0lŒ 2M l

Dl(M l) D(M l0lŒ)
Dl(M)

— yM({l0, lŒ}Q l) (2.13)

and

C
M l0 2M llŒ

Dl(MllŒ) D(Ml0 )
Dl(M)

= C
M l0 2M llŒ

DlŒ(MllŒ) D(Ml0 )
DlŒ(M)

— yM(l0 Q {l, lŒ})
(2.14)
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(the equality results from the relation (2.9)), with the help of which
Eq. (2.12) can be rewritten as

yM(l0 Q l)=yM({l0, lŒ}Q l)+yM(l0 Q {l, lŒ}). (2.15)

Let us consider the sum of the forward and backward mean first-
passage times of the form

yM(lŒY {l, lœ}) — yM(lŒQ {l, lœ})+yM({l, lœ}Q lŒ). (2.16)

An application of the relation (2.9) results in a formula

yM(lŒY {l, lœ})=
D(M) Slœ(l), lŒ(M)
Dlœ(M) DlŒ(M)

, (2.17)

where

Slœ(l), lŒ(M) — C
M llœ 2M lŒ

Dlœ(Mllœ) DlŒ(MlŒ). (2.18)

Let us note yet a relation

yM(lŒY {l, lœ})+yM({l, lŒ}Y lœ)=yM(lŒY lœ), (2.19)

which follows directly from Eq. (2.15). The quantity (2.16), the formula
(2.17) and the relation (2.19) will be very useful in Section 5, where we shall
be considering two coupled enzymatic reactions.

3. APPLICATION TO GATED REACTIONS

Having derived two formulae (2.6) and (2.10) for the calculation of
mean first-passage times we now prove three general theorems of increasing
complexity, useful in the theory of reactions controlled and gated by the
intramolecular stochastic dynamics. The notation used is explained in
Figs. 3(a)–(c), where diagrams of intramolecular dynamics between an
arbitrary number of conformational substates within a given chemical
molecular state are represented by shaded boxes. Figures 3(a) and 3(b)
present irreversible gated reaction—the product state is replaced by the
completely absorbing limbo state (13) denoted by the asterisk. It should be
stressed that the zero transition probability in the backward direction does
not mean here that the detailed balance is broken but that the equilibrium
occupation probability of the initial chemical state Peq is zero.
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(a)

0M *
 η

(b)

0l M *

(c)

η 
α 

1 0 0 2M1 M2

η

Fig. 3. Illustrations to Theorem 1 (a), Theorem 2 (b), and Theorem 3 (c). Shaded boxes
represent diagrams of an arbitrary number of sites and the direct transitions between them.
The asterisk denotes the completely absorbing limbo state.

Theorem 1. The mean first-passage time between the transition
state 0 of a reaction and the limbo state f equals the reciprocal of the
transition state theory rate constant:

y(0Q f)=(keq+ )
−1, (3.1)

where

keq+=(p
eq
0 /P

eq) g, (3.2)

the ratio peq0 over Peq being the local equilibrium probability of the transi-
tion state occupation (it should be interpreted in terms of the conditional
probability, Eq. (2.8), otherwise it equals zero over zero) and g, the transi-
tion probability per unit time through the gate from the transition state 0
to the limbo state (Fig. 3(a)).

Proof. From Eqs. (2.6), (2.18) and (2.7) we have

y(0Q f)=
Dg, 0(Mg)
Dg(Mg)

=
D(M)
gD0(M)

=
P(M)
gp0

,

where Mg denotes the diagram M describing an internal dynamics within
a species M, extended by the transition g to the limbo state f (Fig. 3(a)).
Because the detailed balance condition in M is not broken, any steady-state
probability equals the equilibrium one.

Theorem 2. For an arbitrary state l in M

y(lQ f)=yM(lQ 0)+(oeq)−1 (3.3)

(Fig. 3(b)).
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Proof. There are two kinds of dissections possible of the diagram Mg

into the subdiagrams containg l and f : those leaving the transition g and
the one passing through this transition, thus

y(lQ f)=
Dg, l(Mg)
Dg(Mg)

=
gD0, l(M)+D(M)

gD0(M)

=
D0, l(M)
D0(M)

+
D(M)
gD0(M)

=yM(lQ 0)+(oeq)−1.

Theorem 3. Let the two diagrams M 1 and M 2 (representing the
reagent and the product chemical state of a molecule) be connected by a
reversible transition between the gates denoted as 0, of the probabilities per
unit time g and a in the forward and backward direction, respectively
(Fig. 3(c)). Then, for an arbitrary state 1 in M 1 and an arbitrary state 2
in M 2

y(1Q 2)=(keq+ )
−1+yM1 (1Q 0)+yM2 (0Q 2)+K

−1yM2 (0Y 2), (3.4)

where yM i (i=1, 2) denote the mean first-passage times confined to the
corresponding subdiagrams. The quantity

K=
keq+
keq−

(3.5)

has a meaning of the reaction equilibrium constant,

keq+=g
D0(M 1)
D(M 1)

, keq−=a
D0(M 2)
D(M 2)

(3.6)

corresponding, respectively, to the forward and backward transition state
theory rate constants (cf. Eq. (2.7)).

Proof. Let M denote a sum of the diagrams M 1 and M 2 extended by
the transition between the gates. There are three kinds of dissections pos-
sible of the diagram M into the subdiagrams containing 1 and 2: one passing
through the very transition between the gates, those leaving the forward
transition g and those leaving the backward transition a. Accordingly,

y(1Q 2)=
D2, 1(M)
D2(M)

=
D2(M 2) D(M 1)
D2(M 2) gD0(M 1)
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+g
D2(M 2) D0, 1(M 1)+D2, 0(M 2) D0(M 1)

D2(M 2) gD0(M 1)

+a
D(M 1) S2, 0(M 2)
D2(M 2) gD0(M 1)

.

On using the definitions (3.6) and Eq. (2.10) one gets the thesis (3.4).
For the state 2 being a typical (highly occupied at the equilibrium)

state, the mean first passage time yM2 (0Q 2) is much shorter than yM2 (2Q 0)
and can be neglected. Then Eq. (3.4) reconstructs the general expression
(1.5) for the complete forward rate constant:

k−1+=(k
eq
+ )

−1+yM1 (1Q 0)+K
−1yM2 (2Q 0), (3.7)

and a similar for the backward one.

4. SINGLE ENZYMATIC REACTION

As the first application of the enginery developed in two previous sec-
tions let us consider the simplest, two step, generally reversible enzymatic
reaction (16)

E+R } M } E+P

(R and P stand for the reactant and the product, respectively, E stands for
the free enzyme and M for the Michaelis enzyme-substrate complex). In the
conventional approach all the microscopic substates of the enzymatic
protein are assumed to reach a local equilibrium and in the steady state, for
the molar concentrations of reactant [R] and product [P] kept constant,
only the steady-state concentrations of the macroscopic species [E] and
[M] have to be determined. For this purpose the knowledge of the values
of the conventional kinetics rate constants k −± and k'± (Fig. 4(a)) is suffi-
cient. However, if both component reactions are controlled by the intra-
molecular dynamics of conformational transitions, the steady-state occu-
pation distribution is reached among the conformational substates instead
of the local equilibrium one. Consequently, to describe the actual kinetic
mechanism of enzymatic reaction one has to treat the conformational
transitions on an equal footing with the chemical (here the binding-rebind-
ing) transformations.(20) In Fig. 4(b) the multitudes of conformational
transitions within E and M are represented, as in Fig. 3, by shaded boxes
and both the component reactions are assumed to proceed through gates
consisting of single (possibly effective) explicitly labelled conformational
substates.
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(a)

E
R

M

P
k'' −

k'− 

k' +
k'' +

(b)

R Pη "
α "

η '
α '

0'

0'

0''

0''

E

M

Fig. 4. A two-step, from the chemical point of view, enzymatic reaction. R and P stand for
the reactant and the product, E stands for the free enzyme and M stands for the Michaelis
complex. (a) The cycle performed by the enzyme, described in terms of conventional kinetics.
(b) The scheme involving the intramolecular conformational transition dynamics of the
enzyme. The multitudes of conformational transitions within E and M are represented by
shaded boxes. Both component reactions are assumed to be gated by this dynamics. Notation
of the rate constants and the transition probabilities between the gates is shown.

To determine for such a model the steady-state reaction flux per
enzyme molecule:

J=[Ṗ]/[E]0=−[Ṙ]/[E]0, (4.1)

where [E]0 denotes the total concentration of the enzyme:

[E]0=[E]+[M], (4.2)

one has to know the steady-state occupation probabilities of the gates.
These are to be calculated with the help of the technique just developed. On
using Eq. (2.3) and the notation explained in Fig. 4(b) we have

J=aŒ[R] pE0Œ−gŒpM0Œ

=aŒ[R] D0Œ(E) gœD0œ(M) D(S)−1−gŒD0Œ(M) aœ[P] D0œ(E) D(S)−1. (4.3)

The diagrams are labelled by a letter corresponding to a given species,
and the letter S denotes the total diagram containing E and M and the tran-
sitions between the gates as well. On using the detailed balance conditions

gŒpeqM0Œ=aŒ[R]
eq peqE0Œ, gœpeqM0œ=aœ[P]

eq peqE0œ (4.4)

we can rewrite the flux (4.3) as

J=
aŒ[R] D0Œ(E) gœD0œ(M)

D(S)
11−K−1 [P]

[R]
2 , (4.5)
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where K is the equilibrium constant for the noncatalysed reaction:

K=[P]eq/[R]eq. (4.6)

The denominator D(S) is a sum of 10 kinds of directional diagrams
presented in Fig. 5. After summing them up we find that the flux J can be
written in the form

J=
1−e−bA

y++y−e−bA+y0(K+ebA)−1
, (4.7)

where A denotes the thermodynamic force conjugate to J: (19)

A=b−1 ln K
[R]
[P]

(4.8)

Fig. 5. Ten kinds of directional diagrams for the scheme of stochastic dynamics presented in
Fig. 4(b). Only direct transitions between the gates are explicitely drawn. In the notation
explained in Section 2, Eqs. (2.2), (2.5), and (2.11), for any subdiagram N=E or M the full
box with no exit gates counts as D(N), the full box with one exit gate l as Dl(N), the dissected
box with one exit gate l and one entrance gate lŒ as Dl, lŒ(N)) and the dissected box with two
exit gates l and lŒ and no entrance gate as Sl, lŒ(N).
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(b is the reciprocal temperature multiplied by the Boltzmann constant).
In Eq. (4.7) we applied the chemical equation of state

[R]=[R]0 (1+Ke−bA)−1 (4.9)

assuming that in the open reactor under discussion, the sum

[R]0=[R]+[P] (4.10)

remains constant.
The parameters y± have the meaning of the asymptotic flux periods.

Indeed, for bA± 1 ([R]0=[R]), the flux JQ y−1+ , whereas for bA° −1
([R]0=[P]), the flux JQ −y−1. The dependence of y−1± on [R]0 was found
to be of the conventional Michaelis–Menten form: (16)

y−1±=
k± [R]0
K±+[R]0

, (4.11)

the expressions for the phenomenological parameters k± and K± we get
are, however, unconventional. In the notation explained in Fig. 4(b), the
reciprocal turnover numbers

k−1+=(k
' eq
+ )

−1+yE(0œQ 0Œ)+yM(0ŒQ 0œ), (4.12)

k−1− =(k
− eq
− )

−1+yE(0ŒQ 0œ)+yM(0œQ 0Œ), (4.13)

and the apparent dissociation constant

K+=KŒk+[(k
' eq
+ )

−1+(k − eq− )
−1+yM(0ŒY 0œ)], (4.14)

KŒ being the actual dissociation constant:

KŒ=[R]eq [E]eq/[M]eq. (4.15)

The apparent dissociation constant K− is related to K+ by the Haldane
equation: (16)

K−/K+=(k−/k+) K. (4.16)

The quantities

k' eq+ =(p
eq
M0œ/P

eq
M) gœ, k − eq− =(p

eq
M0Œ/P

eq
M) gŒ (4.17)

Stochastic Theory of Biochemical Processes 153



(PeqM denotes the equilibrium molar ratio of the enzyme-substrate complex
M and peq’s denote the equlibrium occupation probabilities of the appro-
priate conformational substates) are the equilibrium (transition state
theory) rate constants and yE and yM are the mean first-passage times
between the specified gates within E and M, respectively (cf. notation (2.10)
for the sum of the forward and backward mean first-passage times). The
mean first passage times in Eqs. (4.12) to (4.14) are between the succeeding
gates and not between the ‘‘typical’’ average states and the gates as in the
full expression for the rate constant (3.7), thus the parameters k± and K±
cannot be expressed in terms of the rate constants k −± and k'± describing
the conventional kinetics presented in Fig. 4(a).

The parameter y0 determines the position of an inflection point on the
flux-force functional dependence (4.7) and is related to the mean first-passage
times between the gates within the free enzyme E:

y0=(KŒ)−1 [R]0 yE(0ŒY 0œ). (4.18)

More complex (Haldane’s) kinetics of enzymatic reaction (16) can be
considered when replacing the single Michaelis complex M by the enzyme-
reactant and the enzyme-product complexes combined by an additional
gate representing explicitly the very catalysed covalent reaction (Fig. 6). On
substituting yM(0ŒQ 0œ) and yM(0œQ 0Œ) by expressions like (3.4), includ-
ing the corresponding equilibrium rate constants, one reconstructs the
formulae derived previously for the particular protein machine model of
intramolecular dynamics. (9)

If the transition states of the component reactions compose a few
conformational substates of different transition probabilities the total

(a) (b)

R P
0'

0'

0''

00

0''

E

EPER

R P
E

EPER

Fig. 6. A three-step, from the chemical point of view, enzymatic reaction. ER and EP stand
for the enzyme-reactant and the enzyme-product complexes, respectively. (a) The conventional
scheme. (b) The scheme involving the intramolecular conformational transition dynamics
of the enzyme. The multitudes of conformational transitions within E, ER and EP are
represented by shaded boxes. All component reactions are assumed to be gated.
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steady state forward or backward reaction flux is a sum of several terms
like (4.11) with different values of the apparent dissociation constant K+
or K− . However, this sum cannot have in general the Michaelis–Menten
form. Consequently, the sufficient condition for the dynamically controlled
enzymatic process to follow the Michaelis–Menten steady-state kinetics is
gating the component binding-rebinding reactions. That a vast majority of
enzymatic reactions actually obey the Michaelis–Menten law (16) is, when
confronted with the proofs of the slow character of intramolecular protein
dynamics mentioned at the begining, a strong argument for the gated
mechanism of protein involving reactions, we assumed as the basis of all
theoretical models considered.

5. TWO COUPLED ENZYMATIC REACTIONS

As the second application of our tool let us consider the case of great
biological importance of two (for simplicity, unimolecular) reactions:

R1 } P1 and R2 } P2,

one being free energy-donating, e.g., ATP hydrolysis, and the other free
energy-accepting, e.g., other substrate phosphorylation, or simulating a
process of a substrate transfer through the membrane against the concen-
tration gradient or translation of some cargo by a step along the micro-
filament or microtubule. Both reactions are catalyzed by the common
enzyme which makes them thermodynamically coupled. If we shall refer as
a machine to any physical system enabling two other physical systems to
perform work on each other, such an enzyme appears a molecular machine
that operates following controlled fluctuations in the isothermal conditions.

Four possible kinetic schemes can be devised on assuming one sub-
strate-enzyme intermediate for each catalysed reaction: both reactions are
coupled through the free enzyme E (Fig. 7(a)), both are coupled through
the intermediate complex M (Fig. 7(b)), the intermediate complex for one
reaction appears to be the free enzyme for the second reaction (Fig. 7(c))
and both reactions proceed as alternating half-reactions (Fig. 7(d)). The
scheme from Fig. 7(a) applies, e.g., for substrate phosphorylation, that
from Fig. 7(b) for molecular motors, and those from Figs. 7(c) and (d) for
molecular pumps. (21) Further on we confine our attention only to the
scheme (b) in Fig. 7; the reamaining schemes can be treated in a similar
way. The multiconformational counterpart of this scheme is given in Fig. 8.
Here, like in the scheme in Fig. 4(b), the multitudes of conformational
transitions within two enzyme-one-substrate complexes E1 and E2 and the
ternary complex M as well are represented by shaded boxes and the
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assumption of gating is made. The scheme has an explicit symmetry:
rotation by 180° changes the index 1 into 2 and vice versa.

In the steady state, with the molar concentrations of the reactants
[Ri] and products [Pi] kept constant, there are two operational fluxes

Ji=[Ṗi]/[E]0=−[Ṙi]/[E]0 (5.1)

(i=1, 2), [E]0 being the total concentration of the enzyme:

[E]0=[E1]+[E2]+[M], (5.2)

and two conjugate thermodynamic forces

Ai=b−1 ln Ki
[Ri]
[Pi]

(5.3)

M'

R1

P2

M''

E1

E2 R2

P1

M'

R1

P2

M''

E1

M2
R2

P1

E'R1 P2

E''

M1 M2

R2
P1

R1 P2E1

M1

E2 M2

R2
P1

(b)(a)

(c) (d)

Fig. 7. Four possible coupling schemes of two reactions R1 } P1 and R2 } P2 by a
common enzymatic complex. Broken line marks a possible direct transition with no substrate
binding or release between two forms of enzyme or its complexes (the relative slippage of two
enzymatic cycles).
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acting in the system. (19) The quantities Ki denote the equilibrium constants
for the non-catalysed reactions:

Ki —
[Pi]eq

[Ri]eq
. (5.4)

Thermodynamic forces measure the distance from the equilibrium, at
which they vanish. The sum

J1A1+J2A2=F \ 0, (5.5)

nonnegative on the behalf of the second law of thermodynamics, deter-
mines the dissipation flux. The free energy transduction is realized if the
products J1A1 and J2A2, having the meaning of the power input and the
power output, are of different signs. If we assume the force A2 to be nega-
tive, reaction 2, in the absence of reaction 1, proceeds from P2 to R2. It is
the occurrence of reaction 1 that can drive reaction 2 against the conjugate
force A2.

The efficiency of the machine is the ratio

g —
−J2A2
J1A1

=
J1A1−F
J1A1

=1−
F

J1A1
. (5.6)

η ' η  "

R2P2

2'

η 'η "

P1
R1

M

1''

1''

1'

1'

E1

E2

2'2''

2''

1 1

2 2

Fig. 8. A scheme of two coupled enzymatic reactions involving the intramolecular confor-
mational transition dynamics of the enzyme. It is the multiconformational counterpart of the
scheme (b) in Fig. 7. The slippage takes place within a single common form of the ternary
complex M. The multitudes of conformational transitions within E1, E2 and M are repre-
sented by shaded boxes. All the component reactions are assumed to be gated. Only the nota-
tion of the unimolecular transition probabilities between the gates is shown; values of the cor-
responding probabilities of bimolecular transitions in the opposite direction, proportional to
the concentrations [Ri] or [Pi], are related by the detailed balance condition.
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In general, the flux J2 can differ from the flux J1 beacause of a possible
slippage of the corresponding cycles when passing through the substates in
M (cf. Fig. 8 as well as Figs. 7(a)–(c)). The measure of the slippage is a
deviation of the degree of coupling of both fluxes

E —
J2
J1

(5.7)

from unity. The quantity (5.7) can be both smaller or larger than unity.
In terms of the degree of coupling the eficciency (5.6) can be rewritten as a
product

g=−
A2
A1
E. (5.8)

The operational fluxes (5.1) for the model stated are determined by the
steady-state occupation probabilities of appropriate gates. These are to be
calculated with the help of the technique described in detail in Section 2.
There are 63 kinds of directional diagrams that have to be taken into
account. Five of them, contributing to the occupation probability of the
gate E11œ, are shown in Fig. 9.

The flux-force relations which we have found for the scheme of two
coupled reactions given in Fig. 8 are of the same functional form as the
flux-force relation for separate reactions, Eq. (4.7):

Ji=
1−e−b(Ai −A

st
i )

y+i+y−ie−b(Ai −A
st
i )+y0i(Ki+ebAi)−1

(5.9)

(i=1, 2). Now, however, the parameters y+i, y−i and y0i depend yet on
another force and their dependence on the mean first-passage times, tran-
sition state theory reaction rates and the concentrations of the substrates
is much more complex. Moreover, there are aditionanal parameters A sti ,
determining the non-zero values of stalling forces, for which only the fluxes
Ji vanish. For the flux Ji to be a unique function of the force Ai we
assumed that the total concentrations of the reactants and the products of
each kind

[Ri]0=[Ri]+[Pi] (5.10)

remain constant.
The dependence Ji(Ai), Eq. (5.9), is strictly increasing with an inflec-

tion point and two asymptotes (Fig. 10). As we have said the free energy
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Fig. 9. Five kinds of directional diagrams contributing to the occupation probability of
the gate E11Œ in the scheme presented in Fig. 8. In the notation explained in Section 2,
cf. Eqs. (2.11) and (2.18), for a subdiagram N=E1, E2 or M, the full box with one exit gate l
counts as Dl(N), the dissected box with two exit gates l, lŒ and no entrance gate as Sl, lŒ(N),
and the dissected box with two exit gates l and lŒ, the former belonging to the same sub-box as
the entrance gate lœ, as Sl(lœ), lŒ(N) (the fourth gate in the case of M may belong to either
sub-box).

transduction takes place if one of the fluxes, say J2, is of the opposite sign
to its conjugate force, A2. From Eq. (5.9) it follows that this condition
holds when the corresponding stalling force A st2 is negative. The dependence
J2(A2) in the range A st2 [ A2 [ 0 can be convex, concave or involving an
inflection point as well.

We are not going to give the full expressions for the prarameters y+i,
y−i and y0i but formula which we have obtained for the degree of coupling
(5.7) is not that complex and it is worth quoting. We shall write it down in
the form

E=
T1(A1)[1−e−b(A2 −A

st
2 )]

T2(A2)[1−e−b(A1 −A
st
1 )]
. (5.11)
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st

Fig. 10. The character of the functional dependence of the output flux J2 vs force A2. Only
when the stalling force A st2 is negative, the output flux has the opposite sign to its conjugate
force and the process of the free energy transduction takes place. The J2(A2) dependence in
this range is marked with the bold line.

The quantity T1(A1), of the dimension of time, is given by the equation

T1(A1) — (k
eq
+1œ)

−1+yM({1Œ, 2œ}Y 1œ)

+[(keq−1Œ)
−1+yM(1ŒY {1œ, 2œ})] e−bA1

+yE1 (1ŒY 1œ) ([M]
eq/[E1]eq) (K1+1) (K1+ebA1)−1, (5.12)

where the transition state theory unimolecular rate constants

keq−1Œ=(p
eq
M1Œ/P

eq
M) g

−

1, keq+1œ=(p
eq
M1œ/P

eq
M) g

'

1 (5.13)

(cf. the explanations to Eqs. (4.17), the sign + or − in the lower index is
added depending on whether a given reaction proceeds in a counterclock-
wise or a clockwise direction) and yM and yE1 denote the mean first-passage
times back and forth between the specified gates (possibly alternative,
cf. end of Section 2) within M and E1, respectively. Mutual permutation of
1 with 2, corresponding to the rotation of the scheme in Fig. 8 by 180°,
results in a similar formula for the quantity T2(A2).

The quantity T1(A1) determines the value of the stalling force A st2 ,
which is the function of A1:

bA st2=ln 51+yM(1ŒY {1œ, 2Œ})−yM(1ŒY {1œ, 2œ})
T1(A1)

(e−bA1−1)6 (5.14)

(if A2=A
st
2 the degree of coupling E=0). Mutual permutation of 1 with 2

results in a similar formula for the stalling force Aeq1 determined by T2(A2)
(if A1=A

st
1 the reciprocal degree of coupling E−1=0).
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We do not discuss the conditions for the maximum efficiency of the
free-energy trasduction process as even in the linear approximation of the
flux-force relations (which is a bad approximation in usual physiological
and laboratory conditions) the formulae for the values of forces maximiz-
ing the efficiency are very complex. (22) Anyhow, the conditions for the
maximum efficiency and those for the maximum power output contradict
each other. The machine is the more efficient the lower is free energy dis-
sipation, i.e., the slower it works. But the slower it works the lower is its
power output.

However, not always the maximum efficiency or the maximum power
output are the optimum from the point of view of living organism. Very
often the power output of biological machines equals simply to zero, i.e.,
the output forces stall the machines. It can be the case of molecular motors
and molecular pumps as well. Muscles of a man sustaning a big load do
not perform any work (physiologists use not a quite logical term ‘‘isometric
contraction’’ of muscle) but, of course, ATP is consumed in some amounts.
The intracellular concentration of Ca2+ is kept at a very low level to avoid
association with phosphate ions Pi, whereas that of K+, conversely, at a
very high level to secure the appropriate value of the plasma membrane
resting potential. (21) It is due to the ATP hydrolysis by the corresponding
pumps that the ions do not flow into or out of the cell despite the concen-
tration differences. All cases considered are similar to that of a car which
keeps standing at the inclined slope with its wheels constantly rotating and
slipping.

State of the zero power output is advantageous for the organism
because it can be maintained irrespective of environmental changes
(homeostasis). The attainable range of variability of the force stalling the
machine is, however, limited. The dependence found, Eq. (5.14), of the
negative stalling force −A st2 (we assumed A2 [ 0 for the free energy trans-
duction to accomplish) vs the force A1 is strictly increasing but it saturates
both for very large positive and very large negative values of A1. The force
A2 of a value from outside the range determined is no more able to stall the
machine. For small values of bA1, the −A st2 vs A1 dependence, Eq. (5.14),
can be linearized:

−A st2=
[yM(1ŒY {1œ, 2Œ})−yM(1ŒY {1œ, 2œ})] A1

(keq+1œ)
−1+(keq−1Œ)

−1+yM(1ŒY 1œ)+([M]eq/[E1]eq) yE1 (1ŒY 1œ)
.

(5.15)

A similar relation can be derived for the −A st1 vs A2 dependence with
the proportionality coefficient to be gotten from Eq. (5.15) after mutual
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permutation of 1 with 2. In both cases the relation (2.19) ensures the
proportionality coefficient to have a value between 0 and 1.

The assumption of the positive values of bA1 and the negative values
of bA2 is easy satisfied if

K1 ± ebA1 > 1 and K2 ° ebA2 < 1 (5.16)

(cf. Eq. (5.3)), i.e., the machine is highly asymmetrical. If, additionally, we
assume that the mean first-passage times in M, related to the realization of
the reaction R1 Y P1 and R2 Y P2 are much longer than those not related
to it:

yM(1ŒY {1œ, 2œ})° yM({1Œ, 2œ}Y 1œ) % yM(1ŒY 1œ) (5.17)

and

yM({1Œ, 2Œ}Y 2œ)° yM(2ŒY {1Œ, 2œ}) % yM(2ŒY 2œ) (5.18)

(cf. Eq. (2.19)), Eq. (5.11) is simplified to

E=
[y1œ+yM(1ŒY 1œ)] ebA2−[(k

eq
−1Œ)

−1+yM(1ŒY 1œ)] e−bA1−y1œ
[(keq+2œ)

−1+yM(2ŒY 2œ)] ebA2−[y2Œ+yM(2ŒY 2œ)] e−bA1+y2Œ
(5.19)

and the expressions for the stalling forces A st2 and A st1 to

bA st2=ln
[(keq−1Œ)

−1+yM(1ŒY 1œ)] e−bA1+y1œ
y1œ+yM(1ŒY 1œ)

(5.20)

and

bA st1=−ln
[(keq+2œ)

−1+yM(2ŒY 2œ)] ebA2+y2Œ
y2Œ+yM(2ŒY 2œ)

, (5.21)

where we have introduced notation

y1œ — (k
eq
+1œ)

−1+([M]eq/[E1]eq) yE1 (1œY 1Œ) (5.22)

and

y2Œ — (k
eq
−2Œ)

−1+([M]eq/[E2]eq) yE2 (2ŒY 2œ). (5.23)

Note breaking the symmetry with respect to the permutation of 1 with 2,
which results from the assumption of different signes of bA1 and bA2.
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Usually, biological molecular machines operate under the excess of
ATP, (21) i.e., subsystem 1 is far from equilibrium, bA1 ± 1, so we can
neglect the term e−bA1 in the flux-force relations (5.9) and the flux J1 is
reduced to (y+1)−1. In such conditions, the approximation just discussed
simplifies not only the formula for the degree of coupling E, Eq. (5.19), but
also the formulae for the parameters y+2, y−2 and y02, related to y+1, which
appear now to be worth quoting:

y+2=
[R1]eq [E1]eq

[M]eq
([R1]0 k

eq
+2œ)

−1+([R2]0 k
eq
+2Œ)

−1+K−12 ([R2]0 k
eq
−2œ)

−1

+
yM(2ŒY 2œ)
yM(1ŒY 1œ)

5 [E2]eq
K2[M]eq

(keq+1œ)
−1+([R1]0 k

eq
+1Œ)

−1+yE1 (1œQ 1Œ)6

+yE2 (2œQ 2Œ), (5.24)

y−2ebA
st
2=
[R1]eq [E1]eq

[M]eq
([R1]0k

eq
−2Œ)

−1+K2([R2]0 k
eq
+2Œ)

−1+([R2]0 k
eq
−2œ)

−1

+yE2 (2ŒQ 2œ), (5.25)

and

y02=
[R1]eq [E1]eq

[R1]0 [E2]eq
yE2 (2ŒY 2œ). (5.26)

We approximated the equilibrium constant K1 by the ratio [R1]0/[R1]eq.
In the limit bA1 ± 1, because the degree of coupling E does not depend on
[R1]0, both J1 and J2 show the same Micheelis–Menten dependence on
[R1]0, usually denoting the ATP concentration:

J1=E−1J2=
k+[R1]0
K++[R1]0

. (5.27)

We do not quote the general formulae for the parameters k+ and K+ which
can be easy found from Eqs. (5.9) and (5.20), and the formulae for the
parameters y+2, y−2 and y02.

Further approximations depend on a particular problem one is dealing
with at the moment. In the next Section we consider in more detail the case
of actomyosin molecular motor.
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6. THEORY OF MECHANOCHEMICAL COUPLING IN ACTOMYOSIN

MOLECULAR MOTOR

The scheme from Fig. 8 studied in the previous Section is in fact a
multiconformational counterpart of the Lymn–Taylor–Eisenberg model of
a mechanochemical cycle of the actomyosin molecular motor. (23–27) Con-
trary to kinesin (28, 29) and the F1 portion of ATP synthase (30)—two motor
molecules being recently the subject of extensive theoretical studies, the
myosin molecule, like nucleic acid polymerases, (31, 32) is capable to act in a
non-cooperative manner. The actomyosin motor consists of a single myosin
head (some 1200 amino acid recidues) moving along the thin actin fila-
ment. (21, 27) The Lymn–Taylor–Eisenberg kinetic scheme indicates how the
ATPase cycle of myosin is related to a detached, weakly-attached and
strongly-attached states of the myosin head to the actin filament (Fig. 11).
Both the substrate and the products of the catalysed reaction bind to and
rebind from the myosin in its strongly attached state whereas the very
reaction takes place either in the weakly-attached or in the detached state.
Only completion of a whole cycle with the ATP hydrolysis realized in the
detached state of the myosin molecule results in the directed motion along
the actin track; the ATP hydrolysis in the weakly bound state alone is
ineffective (the slippage).

PiT

AA

D

5

3

fast
fast

fast

fast

fast

2

3'

4

AM.T

M.T

AM(D)

AM(T) AM'.D.Pi

AM'.D

AM.D.Pi

M.D.Pi

Fig. 11. Lymn–Taylor–Eisenberg kinetic model of mechanochemical cycle of the actomyosin
motor in the version of Ma and Taylor (25) with a few distinguished conformational states of
myosin. M denotes the myosin head, A the actin filament, T, D and Pi stand for ATP, ADP
and inorganic phosphate, respectively. The original labelling of the reaction steps used by
those authors is indicated. The values of particular rate constants are k+2=1.8 k−2 \ 1000 s−1,
k+3 % k−3 [ 150 s−1, k+3Œ= 150 s−1, k−3Œ < 15 s−1, k+4=2.2 k−4=140 s−1, and k+5=500 s−1

(see also a thermodynamic study by Zhao and Kawai (26) and a compilation by Howard (27)).
The sign + or − in the lower index denotes whether a given reaction proceeds in a coun-
terclockwise or a clockwise direction. The binding-rebinding reaction steps are much faster.
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Following the swinging lever-arm idea, (33) the motor force is generated
in the strongly-attached state by a rotational motion of a catalytic domain
of the myosin head (some 650 amino acid residues) relative to a regulatory
‘‘lever-arm’’ domain (some 550 residues) further on connected by a limp
a-helical thread to a cargo (the thick filament in the case of the muscle
sarcomere). The swinging lever-arm picture has strong grounds in the motility
assays, (34, 35) the X-ray crystallography, (36–39) the electron micrography, (40)

time-resolved electron cryomicroscopy,(41) observations of hyperfine struc-
ture of EPR spectra, (42, 43) fluorescence polarization, (44, 45) and fluorescence
resonance energy transfer. (46–48)

No agreement has been reached yet on the very mechanism of the
mechanochemical coupling. Presumably, much of the superfluous discus-
sion on this topic results from the fact that authors often do not clearly
state which notion of the force they have in mind: that on the micro-, meso-
or macroscopic level? The force in the Newtonian sense can be defined
only on the microscopic level of motion of individual atoms. This is the
subject of molecular dynamics and will not be considered here. The force
exerted by a motor on a track, always balanced by the Brownian and the
friction forces, has a meaning on the mesoscopic level of stochastic dynam-
ics of a single motor macromolecule. Otherwise, the external load acts on a
statistical ensemble of motor molecules composing the sarcomere or the
whole muscle and can be directly defined only on the macroscopic level of
irreversible thermodynamics. A matter of argument is how to include the
external load on the mesoscopic level of the single molecule stochastic
dynamics.

Following Hill, (19) the force exerted by individual molecules is a strictly
molecular property, not dependent on macroscopic external constraints
such as the load discussed. Thus this load, in the steady state simply
balancing the mean force exerted by the ensemble of all motor molecules,
can be only a property of the organization of the statistical ensemble.
In particular, the load influences the number of myosin heads bound to the
actin filament. (49) Other authors, (50) on the contrary, consider a macro-
scopic force as acting on individual molecules and changing the free
energies of their particular conformational states, thus the probabilities of
the corresponding stochastic transitions. All thermal ratchet models take
into account the external load, either as a constat quantity (51–53) or as a
variable depending on a particular conformational substate of the motor
molecule. (54) In our opinion, however, these models apply directly only to
single molecules, e.g., myosin sliding over an actin filament held in
laser traps in the motility assay (34) or F1 motor in ATP synthase. (30) In both
cases the position of the motor, thus the force acting by or on it, has no
thermodynamic, i.e., macroscopic meaning.
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A crucial argument for the proper treatment of the load in the ther-
modynamic sense comes from the recent EPR studies by Baker et al. (42, 43)

These authors distinguished only two discrete orientations of the myosin
lever-arm domain, probably ordered by interactions with the core of the
myosin thick filament. Changes of the external load in the isometric condi-
tions, combined with the appropriate changes of the inorganic phosphate
Pi concentration, appeared to lead to no changes in the distribution of
both biochemical and orientational states of the myosin heads. The authors
conclude that the load does not influence the conformational states of
individual myosin heads and propose to explain the observation with the
help of simultaneous changes of equilibria of the actin filament binding
and the phosphate Pi releasing reactions. (55) This explanation is based on a
rather restrictive assumption that in the isometric muscle, when the ATPase
and mechanical cycles compensate each other, the concentrations of
myosin heads attached to and detached from the actin filament are equal.
If we reject this assumption and treat both cycles in arbitrary conditions
independently, it will be sufficient to determine the effect of the load in
terms of changes of the binding free energy to actin filament before and
after translation by a unit step. It should be noted that these changes, being
a measure of the departure from equilibrium, must not be related to
changes of conformational free energies as in ref. 50, making use of the
detailed balance condition, thus, contrary to the very authors, we consider
their observation as confirming and not contradicting the Hill’s point of view.

The changes of the binding free energy can be expressed as the changes
of the effective rather than actual concentrations of the actin filament
before and after translation. As a consequence, the actomyosin motor can
be effectively treated as a usual chemo-chemical machine. We assume such
an approach in the present paper. However, we consider the kinetic scheme
in Fig. 11 to be insufficient for the proper description of the actomyosin
mechanical cycle. Stochastic dynamics of individual myosin heads needs
two distinct time scales, the fast one, of internal molecular vibrations,
and the slow one, of conformational transitions. It is the averaging over
vibrational degrees of freedom that leads to purely stochastic transitions
between conformational substates of the well-defined free energy levels.
Following what we said in the Introduction the number of such defined
conformational substates appears to be much larger than that specified in
Fig. 11.

Numerous experiments indicate considerable conformational mobility
of the myosin head. Fluorescence polarization data show an essential
increase of the dispersion of the lever-arm domain tilt angle relative to the
actin filament axis during the change from rigor to relaxed physiological
states of especially prepared muscle. (45) A local, internal conformational
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disorder on the nanosecond time scale was observed when analysing the
hyperfine splitting of EPR signal of a nitrooxide spin label. (56) A global,
orientational disorder of the catalytic domain relative to both the actin
filament and the lever-arm domain was observed in the microsecond time
scale using the saturation transfer EPR (57, 59) and detection of fluorescence
polarization of a single molecule. (44) The orientational disorder on the
milisecond time scale was observed by the parallel studies of stopped-flow
fluorescence and time-resolved electron cryomicroscopy.(41) Following
many investigators (42, 57, 58) the ‘‘power stroke’’ is in fact a conformational
disorder to order transition. A multitude of conformational states corre-
sponding to this disorder has to be taken into account in the kinetic scheme.

To determine the force exerted by the myosin head on the actin fila-
ment, one usualy considers a quasi-continuum of conformational substates
labeled with the help of a one-dimensional variable characterizing the
position of a given fragment of the myosin head relative to a fixed point on
the actine filament. The force is a negative derivative of the free energy
with respect to this variable. (19, 49, 51–53) However, a possibility of the orien-
tational motion of the catalytic domain relative to either the actin filament
or the lever-arm domain indicates that the stochastic dynamics of confor-
mational transitions in the actomyosin motor is much more complex than
one-dimensional diffusion. In fact, both the X-ray crystallography(39) and
the study of cross-linking between two thiols Cys-522 and Cys-707 (60) or
Cys-697 and Cys-707 (61) show that bonding of ATP results in melting the
SH1-SH2 helix, crucial for the myosin head rigidity. Several important for
binding, flexible surface loops are not seen in the X-ray diffraction at all.(36–39)

As we have already told the scheme from Fig. 8 is exactly a multi-
conformational counterpart of the Lymn–Taylor–Eisenberg model, Fig. 11.
The state E1 represents the myosin-ADP complex strongly attached to the
actin filament, the state M–the myosin-ATP or ADP ·Pi complex weakly
attached, and the state E2, the latter complex detached from the actin
filament. In physiological and most of experimental conditions, in the
presence of creatine phosphate/creatine kinase system, the ADP concen-
tration is few orders of magnitude lower than the ATP concentration (21)

thus, for the fixed ADP concentration, the ATP hydrolysis can be treated
effectively as a unimolecular reaction

R1 Y P1,

where R1 is ATP and P1 is the inorganic phosphate Pi. We have already
mentioned that also physical motion can be treated as a unimomolecular
reaction

R2 Y P2,
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R2 denoting the actin filament before translation and P2, the actin filament
after translation by a step (presence of the the load changes effective
concentrations [R2] and [P2]). As a consequence, the motor appears a
chemo-chemical machine, enzymatically coupling two unimolecular reac-
tions, a free energy-donating one and a free energy-accepting one.

All the binding-rebinding reactions are assumed to be gated, i.e., take
place only in certain conformational substates (or small groups of such
substates) of the myosin head. Figure 12, constructed on the basis of the
results reported in the majority of the already cited experimental studies,
mainly the X-ray crystallography, (36–39) characterizes schematically all the
four gates denoted in Fig. 8 as 1Œ, 1œ, 2Œ, and 2œ.

1' 1''

2'2''

Fig. 12. Characteristics of four conformational substates of the myosin head being the gates
for the four bimolecular binding-rebinding reactions in scheme presented in Fig. 8. In the state
E1 the strong attachement of the myosin head to the actin at two sites (the black dots) makes
the nucleotide pocket (weakly shaded) relatively rigid. The SH1-SH2 helix transmits the
motion of the lever-arm domain onto the pocket shape, which in the substate 1Œ enables
binding-rebinding the ATP molecule (two joined circles) and in the substate 1œ, the Pi mole-
cule (a smaller circle). In the detached state E2 the SH1-SH2 helix is melted. For the myosin
head to attach weakly (at one site) to the actin, an appropriate surface loop (the single black
dot) has to assume an adequate shape, different for the nucleotide being non-hydrolysed (the
substate 2œ) or hydrolysed (the substate 2Œ). This can but need not be related to the position of
the lever-arm domain. Here we assumed that these positions coincide with the corresponding
positions in the E1 state.
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A consequence of the low concentration of ADP is a very large value
of the equilibrium constant K1 for the effectively unimolecular reaction of
ATP hydrolysis. Conversely, because the structure of the actomyosin motor
is highly asymmetric and effects of the same load, when applied in the
opposite directions, differ very much, we assume the value of the equilib-
rium constant K2 to be very small, the effective equilibrium concentration
of P2 being much lower than that of R2. Thus, the conditions (5.16) are
satisfied and it is easy for the force A1 to be positive and for the force A2,
negative (but not the other way round!).

In the case of the actomyosin motor the flux-force dependence J2(A2)
is concave (62) which means (cf. Fig. 10) that

y+2 ° y−2ebA
st
2 . (6.1)

On neglecting y+2 and assuming K2=0 in Eq. (5.9) for i=2 we get the
functional dependence

J2(A2)=
ebA2−ebA

st
2

y−2ebA
st
2+y02

=J2(0)
ebA2−ebA

st
2

1−ebA
st
2

, (6.2)

where J2(0) is the value of the flux J2 for A2=0, i.e., in the absence of the
load. Function (6.2) describes experimental behaviour equally well as the
phenomenological A. V. Hill’s hyperbolic dependence (62) and in Fig. 13 we
show how it fits the data of He et al. (62) for the sarcomere shortening
velocity. The fitted values of the negative stalling force in kBT units,
−bA st2 , we have got are much larger than 1. As a consequence, ebA

st
2 is

small and the flux-force dependence J2(A2) for the actomyosin motor can
be simplified even more:

J2(A2)=J2(0) ebA2. (6.3)

Satisfaction of the inequalities (5.16) indicates that the approximations
made at the end of the previous Section are, in the present case, justified.
If, additionally, we take into account that the times of the bimolecular
steps, described by the reciprocal transition state theory rate constants
(keq)−1, are negligibly small (cf. the caption of Fig. 11), the expressions
(5.20) and (5.21) for the stalling forces A st2 and A st1 are simplified to

bA st2=ln
e−bA1+c1
1+c1

(6.4)
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J2(A2)/J2(0)

Fig. 13. Fit of Eq. (6.2) to the data of He et al., (62) Fig. 3, for the sarcomere shortening
velocity. The black circles correspond to the slow fibers and the white circles, to the fast 2A
fibers in the terminology of those authors. The fitted values of the negative stalling force
in kBT units, −bA st2 , were found to be equal 4.8 and 7.9 for the slow and the fast fibers,
respectively.

and

bA st1=−ln
ebA2+c2
1+c2

, (6.5)

where the parameters c1 and c2 denote the ratios

c1 —
[M]eq yE1 (1ŒY 1œ)
[E1]eq yM(1ŒY 1œ)

(6.6)

and

c2 —
[M]eq yE2 (2ŒY 2œ)
[E2]eq yM(2ŒY 2œ)

, (6.7)

respectively. In Fig. 14 we show how the function of the form (6.4) fits the
experimental data of Pate et al. (63) The maximum value of 10.0 of the
negative stalling force in kBT units, −bA st2 , is comparable to the values of
4.8 and 7.9 determined for other samples from the flux-force dependence,
Fig. 13. In the linear range the negative stalling force −bA st2 was found to
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Fig. 14. Fit of Eq. (6.4) to the data of Pate et al., (63) Fig. 6. We have assumed that the ratio
of the concentrations of ADP and ATP were fixed constant during the experiment so that the
concentration of inorganic phosphate Pi determines directly the force bA1 in kBT units. The
proportionality coefficient between the negative stalling force −bA st2 and the force bA1 in the
linear range was found to equal unity with the accuracy better than 1 %. The maximum nega-
tive stalling force −bA st2 in kBT units was fitted to be equal 10.0, which corresponds to the
value of the ratio c1 to be 0.45×10−4.

equal the force bA1 with a high accuracy, which agrees with the small value
of the parameter c1=0.45×10−4 corresponding to the maximum value of
the negative stalling force. We consider that the interpretation of the
experimental data in terms of Eq. (6.4) is more correct than in terms of the
formulae derived under the assumption of proximity to equlibrium. (63)

Far from the chemical equilibrium, in the limit bA1 ± 1, on neglecling
the exponential e−bA1 and the small ratio c1 the reciprocal of the degree of
coupling (5.19) takes the extraordinarily simple form:

E−1=
yM(2ŒY 2œ)
yM(1ŒY 1œ)

(1+c2e−bA2). (6.8)

In the same approximation the exponential ebA2 becomes directly propor-
tional to the flux J2. On multiplying Eq. (6.8) by this flux we get the
relation

J1 3 1+c−12
J2(A2)
J2(0)

, (6.9)

Stochastic Theory of Biochemical Processes 171



0 0.25 0.5 0.75 1 J2(A2)/J2(0)
0

1

2

3
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Fig. 15. Fit of Eq. (6.9) to the data of He et al., (62) Fig. 4A. We have assumed that, follow-
ing Eq. (6.3), the exponential ebA2 equals directly to the ratio J2(A2)/J2(0). The black circles
correspond to slow fibers and the white circles, to fast 2A fibers in the terminology of ref. 62.
The fitted values of the ratio c2 were found to equal 0.52 and 0.40 for the slow and the fast
fibers, respectively.

which states an approximately linear dependence between the rate of ATP
utilisation and the rate of the muscle shortening. Figure 15 shows how this
dependence fits the data of He et al. (62) The ratio c2, of a value of the order
1/2, appears to control the Fenn effect—a decrease of the rate of ATP
consumption with reducing the muscle shortening rate. Contrary to the
ratio c1, the ratio c2 is not small.

Equation (6.9) gives an idea of the character of the J1 dependence on
the load. To get the full expression for the ATPase activity as a function of
the ATP concentration we can use Eq. (6.8) and formulae (5.24) to (5.26)
for the parameters y+2, y−2 and y02, derived on assuming inequalities (5.16)
and putting e−bA1=0. For the condition (6.1) to be satisfied the mean first
passage time yE2 (2ŒQ 2œ) has to be much longer than yE2 (2œQ 2Œ) and all
the remaining transition state theory rate constants. Experimental data
(Fig. 11) suggest that, indeed, the times of the very bimolecular steps are
negligibly small. As a consequence, we have

y−2ebA
st
2=K−1+ [R1]0 y02=yE2 (2ŒQ 2œ), (6.10)

where

K+=[R1]eq [E1]eq/[E2]eq (6.11)
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represents the apparent dissociation constant in the Michaelis–Menten
equation (5.27). Simultaneously, the ATPase turnover number

k+=
ebA2−ebA

st
2

yE2 (2ŒQ 2œ)
E−1. (6.12)

The Michaelis–Menten type dependence of the ATPase activity J1 on
the ATP concentration [R1] was observed for the case of the actomyosin
motor both in the absence of the load (25) and for nonzero A2. (64) Also the
velocity of actin filament translocation over heavy meromyosin, propor-
tional to J2, depend on the ATP concentration in the Michaelis–Menten
manner. (65) The values of the Michaelis constant K+ both for J1 and J2 are
similar, of the order of 10−4M. (25, 64, 65)

For molecular motors the degree of coupling (5.7) has a meaning of
number of steps made by the motor per one ATP molecule hydrolysed. The
ratio of the working stroke distance to the distance traveled per one
hydrolytic cycle is refered to as a duty ratio r. (66) Directly from the defini-
tion it follows that the duty ratio and the degree of coupling are in the
inverse proportionality relation:

r 3 E−1. (6.13)

As the exponential ebA2 is directly proportional to the flux J2, Eq. (6.8)
represents a hyperbolic dependence of the duty ratio on the sarcomere
shortening velocity. This is indeed observed experimentally. (62)

During one ATPase cycle the myosin head transits only once through
the state E1 where the working stroke takes place. For skeletal muscle
myosin the working stroke distance equals ’ 5 nm (34, 35, 40) and the duty
ratio varies from 0.07 (unloaded sarcomere) to 0.3 or more. (62) In the con-
ventional approach (66) the ratio (6.8) is assumed to equal unity (no slip-
page) whereas the distance of a single step to a varying multiple of the actin
filament period, 36 nm (such a large step is supposed to be possible due to
the cooperative organization of the whole assembly of the myosin heads in
a sarcomere). However, recent studies clearly demonstrate that a single
myosin head moves along the actin filament with much smaller regular
steps of ’ 5 nm, which is an actin molecule diameter, (67) and instead, mul-
tiple steps can be produced during a single ATPase turnover. (68) There is
no reason to doubt that the actin heads behave in a similar manner in the
assembly. As a consequence, because the step and the working stroke
distances approximately equal each other, the ratio (6.8) should exactly
coincide with the duty ratio:

E−1=r. (6.14)
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In order to fit the experimental data, the ratio yM(2ŒY 2œ)/yM(1ŒY 1œ)
must be of the order 1/20. The long mean first-passage time yM(1ŒY 1œ)
can be explained by the necessity of a twofold melting and recrystallization
of the SH1-SH2 helix (39, 60, 61) during a transition from the substate 1Œ to
1œ and back, cf. Fig. 12. The relatively short mean first-passage time
yM(2ŒY 2œ) and the even shorter mean first-passage time yM(2ŒQ 2œ) are
the reason why, before coming back to the strongly attached state E1, the
myosin head can stochastically undergo several mechanical cycles through
the detached state E2. The direction of that motion is determined by a large
disproportion between the times yE2 (2œQ 2Œ) and yE2 (2ŒQ 2œ). It is the
latter time that determines the motor velocity, cf. Eq. (6.12).

The scheme given in Fig. 8 represents the mechanochemical cycle of
the actomyosin motor seen from the point of view of the myosin molecule.
In Fig. 16(a) the very mechanical part of that cycle is presented as seen
from the point of view of the entire motor motion, and the numbering of
positions of the myosin head along the actin track is given (the index l).
A transition from the substate 2'l to either the substate 2 −l or 2 −l+1 is pos-
sible, which corresponds to the motion back and forth the actin filament,
respectively. Contrary to Fig. 8, the vertical axes on Fig. 16 represent the
free energy levels of individual gates. The external force A2 exerted by a
cargo does not influence the free energy of any conformational substate but
induces a difference between the myosin-actin binding free energies before
and after the translation. As a consequence, for the negative A2, the
diagram is constantaneously ascending.

The very chemical cycle of the actomyosin motor is shown in
Fig. 16(b) where the index n indicates the reaction progress—a number of
ATP molecules hydrolized. Here a departure from chemical equilibrium
results in changes of the free energy levels of the whole macromolecule by
A1 in each cycle. (19) It is the progress of the ATPase cycle that can cause a
descend of the free-energy level diagram vs position along the actin track.
Figure 16(c) presents the case when both cycles proceed alternatively:
translation by a step, reaction, translation by a step, reaction, etc., which
corresponds to the value of the degree of coupling E=1. But E can be both
smaller and greater than unity. Such a more general case with possibly
repeated both mechanical and chemical cycles needs a three-dimensional
presentation. (69) In fact, the degree of coupling E, in the case of the acto-
myosin motor proved exacly to coincide with the reciprocal duty ratio r, is
several times larger than unity.

In the detached state E2 and in the weakly-attached state M the free
energies of the entrance and exit gates do not differ very much. However,
in the strongly-attached state E1 the exit gate has much lower free energy
than the entrance gate. That the substate 1Œ has much lower free energy
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Fig. 16. (a) Mechanical cycle of the actomyosin motor as seen from the point of view of the
motor motion. Numbering of positions of the myosin head along the actin track is given.
(b) The very chemical cycle; index n indicates the reaction progress—a number of ATP mole-
cules hydrolized. (c) Mechanical cycle alternatig the chemical cycle with the degree of coupling
E=1. The vertical axis represents the free energy of the gates. The chemical force A1 and the
mechanical force A2 are measures of the departure from equilibrium.

than 1œ follows, e.g., from its much higher steady-state occupation
observed in EPR studies. (42) The drop of the free energy in the transition
1œQ 1Œ of the myosin head strongly attached to the actin filament corre-
sponds, of course, to the power stroke. However, no details of the power
stroke mechanism are important for the action of the actomyosin motor.
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Three fundamental parameters of the theory presented are the three first-
passage times yM(1ŒY 1œ), yM(2ŒY 2œ) and yE2 (2ŒQ 2œ) within M and E2
but not E1.

7. SUMMARY

Substantial majority of biochemical processes are controlled and gated
by purely stochastic dynamics of conformational transitions in the protein
enzymes involved. In order to make it possible to calculate the steady-state
reaction fluxes in such processes we developed the Hill’s technique of
summing up the directional diagrams of stochastic dynamics. We applied
this technique to a single enzymatic reaction and two coupled enzymatic
reactions with several chemical steps gated by conformational transition
dynamics of arbitrary type. The case of two coupled reactions was con-
sidered as representing the biologically important process of free energy
transduction. Serious simplifications of the relevant formulae were
obtained after assumption that this process is highly asymmetrical.

Far from equilibrium, when the reaction products are immediately
taken from the system, the stady-state reaction fluxes calculated for gated
(and only for such) enzymatic reactions appeared to obey the conventional
Michaelis–Menten type dependence on the substrate concentration with
parameters related to the equilibrium (transition state theory) rate con-
stants and various mean first-passage times. These are to be determined
within a definite model of conformational transition dynamics that can
be found in detailed research of a definite problem. A consequence of the
slow character of intramolecular dynamics is the lack of a direct relation-
ship between the parameters of the steady-state kinetics and the complete
(nonequilibrium) rate constants of particular component reactions. The
mean first passage times in Eqs. (4.12) to (4.14), (5.19) to (5.21) and (5.24)
to (5.26) are between the succeeding gates and not between the ‘‘typical’’
average states and the gates as in the full expression for the rate constant
(3.7). We would like to conclude this result with a few, maybe speculative,
comments.

The first comment concerns the role of the equilibrium rate constants
in enzymatic catalysis. On assuming that the billions years lasting biologi-
cal evolution acted so as to optimize the rate of enzymatic reaction and
that the optimum rate is the fastest possible, one can speculate that the
present day enzymes have the entrance and the exit gates for the reac-
tion very close to each other so that the corresponding mean first-passage
times are negligible. Puttig them equal to zero in Eqs. (4.12) to (4.14)
results in the reconstruction of simple conventional expressions (16) but with
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the full reaction rate constants replaced by their transition state theory
counterparts. This could explain the applicability of the transition state
theory for description of enzymatic catalysis, commonly assumed by most
enzymologists. (16)

The second comment concerns the role of the mean first-passage times
between the gates in the control of enzymatic catalysis. The activity of
protein enzyme can change greatly upon binding an effector molecule.
Conventional approach to heterotropic allosteric regulation, in particular
noncompetitive inhibition, assumes the effector binding to induce long-rage
structural changes. (16) However, there is serious evidence that it can induce
some dynamical changes as well. (70–73) Our theory predicts the enzyme tur-
nover number to depend on both the equilibrium rate constants and the
mean first-passage times between the entrance and exit gates. The former
are determined by the structure but the latter, by the dynamics. It is physi-
cally reasonable to suppose that some inhibitor molecules can act so as
to increase the mean first-passage times between the gates rather then to
decrease the equilibrium rate constants. The importance of this supposi-
tion, if actually true, in particular for pharmacology, can hardly be over-
estimated.

Contrary to the single enzymatic reactions in which the mean first-
passage times between conformational substates of the enzyme seem to be
negligible in the optimum conditions, in the case of the free energy trans-
duction processes those times appear to be of the fundamental importance.
Our theory of the actomyosin motor is based on three such times:
yM(1ŒY 1œ), yM(2ŒY 2œ) and yE2 (2ŒQ 2œ), cf. Fig. 8 and Eqs. (6.4) to
(6.12), and these are, in fact, the only parameters of the theory. The time
yM(1ŒY 1œ) is some 20 times longer than the time yM(2ŒY 2œ) and this
elucidates why the degree of coupling E, following Eq. (6.8), can have a
value greater than unity. It agrees very well with the recently demonstrated
multiple stepping produced by a single myosin head during just one
ATPase cycle. (67, 68)

The scheme in Fig. 8 represents a generalization and, simultaneously,
a contraction of the thermal ratchet models extensively discussed in recent
years. (51–54) Contrary to the hitherto considered models, the present model
is not necessarily one-dimensional—the shaded boxes symbolize arbitrary
lattices of conformational substates, in particular they can be fractal latti-
ces. (11) On the other hand, contrary to our model with gated binding-
rebinding transitions, the thermal ratchet models were originally considered
for delocalized transitions. In such a case the ATP concentration depen-
dence of the output flux displays a maximum (the phenomenon of stochas-
tic resonance). No such maximum is observed experimentally, on the
contrary, what is observed is a standard Michaelis–Menten dependence, in
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agreement with our prediction, Eq. (5.27). This can be considered as one
more argument for the gated mechanism of protein involving reactions
assumed in the present paper.
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14. M. Kurzyński, Internal dynamics of biomolecules and statistical theory of biochemical
processes, Phys. A 285:29–47 (2000).

15. L. A. Blumenfeld, Problems of Biological Physics, Springer Series in Synergetics, Vol. 7
(Berlin, 1981).

16. A. Fersht, Enzyme Structure and Mechanism, 2nd Ed. (Freeman, New York, 1985).
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